

Economic Model Predicting Spatial Risk & Cost of Invasive Species Spread: Application to New Zealand Mudsnails

Youngah Lim, Munisamy Gopinath, Sam Chan, and Michael Harte

Acknowledgment:

- Funding provided by Oregon Sea Grant
- Tania Siemens, Oregon Sea Grant

Contact: Youngah Lim (limy@onid.orst.edu)

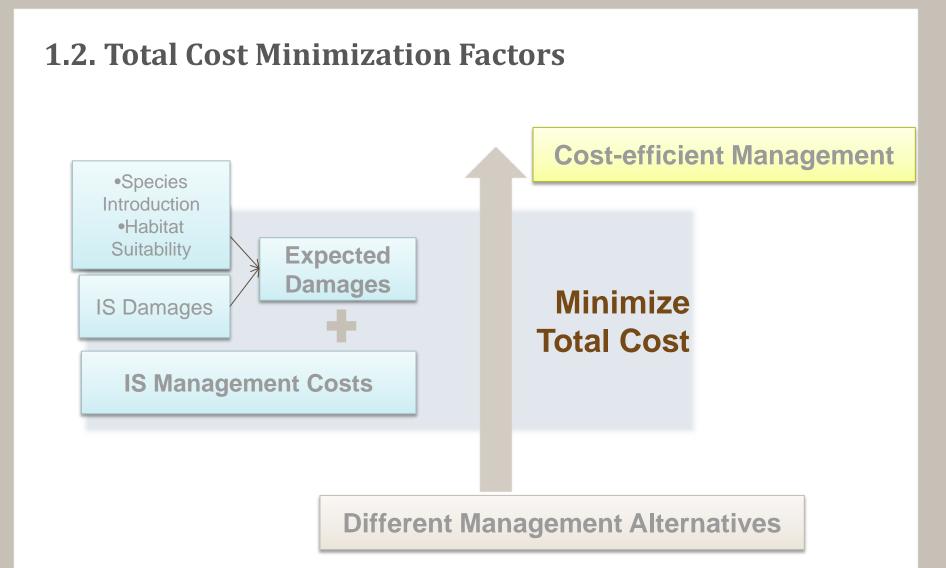
Image from USGS NAS

1.1. Motivation

• Why are New Zealand mudsnails problems?

- High tolerance to broad range of environmental conditions & reproducing asexually
- Possible ecological impact
 - Potential impacts on other invertebrates and nutrient levels in water
 - Probable influence on primary producers
 - Effects on prey and predator relationship
- Possible economic impact (similar to Zebra mussels)
 - Contamination of drinking water
 - Biofouling
 - Recreational disutility
- How to Minimize their Negative Impact?

Small Aquatic Invasive Species: New Zealand Mudsnials


←NZMS from USGS website (Accessed April 04, 2011)

New Zealand Mudsnials on a Wading Boot

Photo: D. AcKinney → from mudsnails.com (Accessed March 06, 2011)

November 07, 2013

1.2. Total Cost Minimization Factors (cont.)

Expected Damage

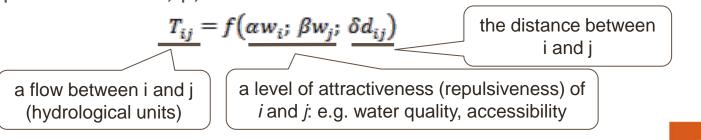
- Risk
 - Introduction Risk (Gravity model)
 - Habitat Suitability (Maximum Entropy)
- Damages
 - Habitat Degradation (InVEST, Integrated Valuation of Ecosystem Services and Tradeoffs) → Disutility of Anglers (Randum Utility Model)
 - Water Facility Damages (Connelly et al., 2007)
 - Boat Maintenance due to Biofouling

Management Cost

- Statewide Management: Prevention, EDRR plus & Ex-post management (Survey on Field managers)
- Water Facility: Prevention, EDRR plus & Ex-post management (Connelly et al., 2007)
- Boater Decontamination (Chemical Decontamination assumed)
- Hatchery Prevention (Installing Hydrocyclone)

3. Risk Prediction

- Risk of Invasive Species Introduction
 - Natural spread & host range spread; Accidental introduction; or Intentional introduction
 - Unintentional transportation by humans is a key IS vector
- Risk of Invasive Species Establishment
 - After introduction, IS may successfully establish in a recipient region, or may fail to establish based on **environmental and biological factors**
- The relative risk of IS distribution = Pr[risk of anthropogenic introduction] X Pr[habitat suitability]
- Initial study species: New Zealand mudsnails
- Study unit = Hydrologic Unit


3.1. Risk of Invasive Species Introduction: model

- Invasive Species Transported by Humans
 - Based on the propagule pressure concept
 - Propagule number = # of release events
 - \rightarrow the number of boats from infected regions
 - Propagule size = # of organisms involved in one release event
 - ightarrow the level of infection of the donor regions

We cannot estimate it because we don't have density information

Oreq

- Spatial interaction model (Gravity Model)
 - \rightarrow parameters = α , β , and δ

3.2. Risk of Introduction: data & estimation

• Empirical Model (exponential function): Tobit model used

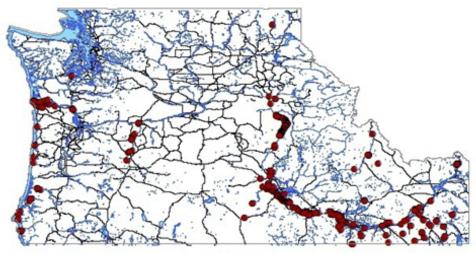
$$\begin{split} T_{ij} &= \alpha_0 + \alpha_1 \ln(HUC \ size)_i + \alpha_2 \ Herfinhahl_i + \alpha_3 \ Road \ density_i \\ &+ \beta_1 \ln(HUC \ size)_j + \beta_2 \ Herfindahl_j + \beta_3 \ Road \ density_j \\ &+ \gamma_1 \ Dummy(Ocean)_j + \delta d_{ij} + \varepsilon_{ij}. \end{split}$$

- Spatial unit → hydrologic unit
- T_{ii} : the number of boats from i to j (censored at 0)
- HUC size (km²) : hydrologic area size
- Herfindahl : water concentration
- Road density (km/km²) : accessibility
- Dummy = 1 if HUC is adjacent to the Pacific Ocean, 0 otherwise
- Distance_{ii} (m) = distance between i and j

3.3. Risk of Introduction: gravity model results

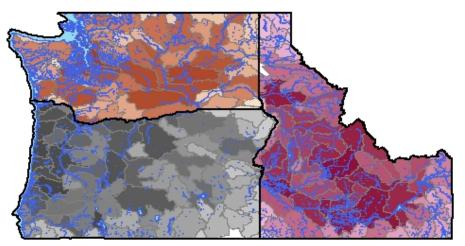
Independent	Idaho		e.g. Mor
Variable	Coefficient	Standardized Coefficient	
Constant	-297.59 *** (38.32)		
Distance _{ij}	-4.42 E-4 *** (2.51 E-5)	-80.65	Close
ln(HUC size) _i	27.47 *** (2.59)	64.84	
ln(HUC size) _i	23.03 *** (3.85)	45.89	→ Large
Herfindahl _i	0.01 *	11.31	
Herfindahl _j	0.02 ***	18.73	More
Road Density _i	655.59 *** (55.42)	54.61	-
Road Density _i	282.21 *** (53.90)	24.11	More
Dummy (Ocean)			
Log likelihood	-48178.99 * indicate 1%, 5%, and)4 10% level of si	gnificance, respectively

e.g. More boaters would visit


Closer area

➔ Larger area

More water-concentrated area



3.4. Risk of Introduction (Normalized Boat Flow)

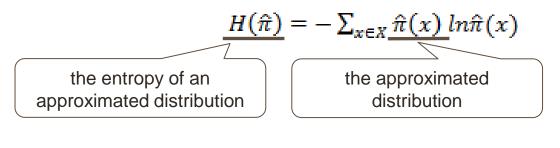
New Zealand Mudsnails Infected

NZMS
 Waber Body
 Road

Predicted Boat Flows

9

November 07, 2013


3.5. Species Habitat Suitability: maximum entropy

• Ecological Niche

- Joint environmental conditions which allow the birth rate of a local population to be equal to or greater than the death rate, and per capita effects of the species on these environmental conditions (Chase & Leibold, 2003)
- Species Distribution Model (Maximum Entropy)
 - Entropy = a measure of information (Shannon, 1948)
 - Assume that π is an unknown probability distribution over a finite set X
 - X = grids of study area whose elements represent the recorded presence

Oreao

• The entropy of approximated distribution $\hat{\pi}$:

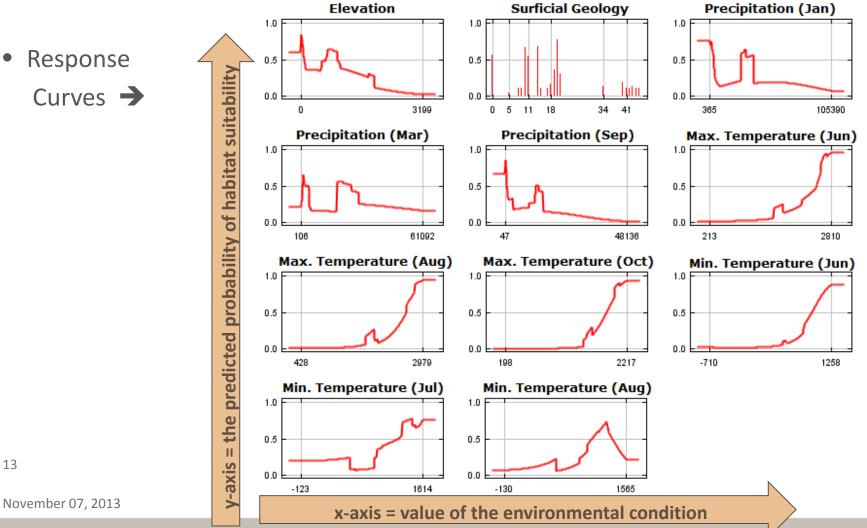
3.6. Species Habitat Suitability: model

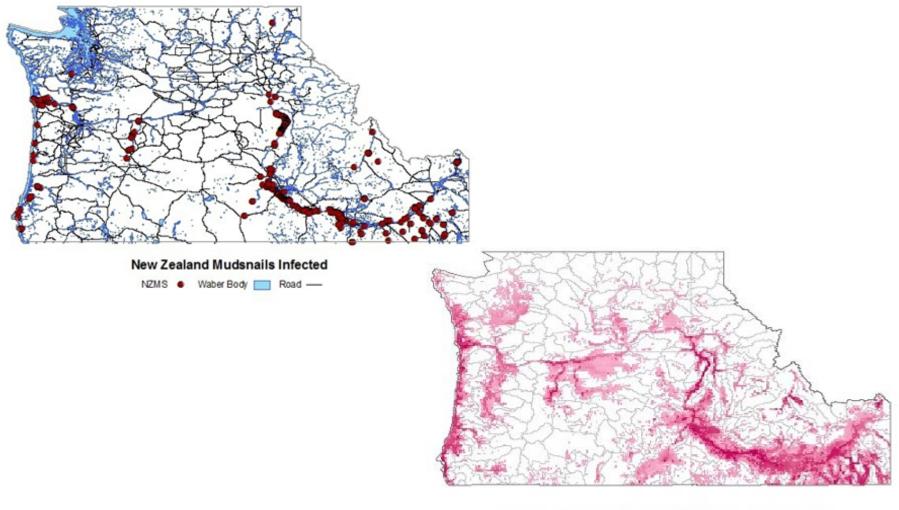
- *Maxent* Software (developed by Steven Phillips, AT&T Labs)
 - Assume that f_1, \dots, f_n are known functions of features, e.g. environmental variables or functions thereof
 - Let the expectation of features be $\pi[f_j] = \sum_{x \in X} \pi(x) f_j(x)$
 - Then, the Maxent will maximize the entropy under the constraint: max $H(\hat{\pi})$

s.t. $\hat{\pi}[f_j] = \tilde{\pi}[f_j]$ \rightarrow it can be relaxed as $|\hat{\pi}[f_j] - \tilde{\pi}[f_j]| \le \beta_j$ (Phillips et al. 2006) the expected features of empirical samples the expected features of approximate of unknown distribution

• Outcomes will assign (relative) probability each grid: $Pr(H_k)$

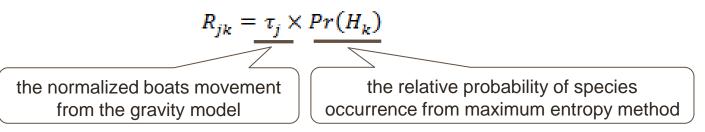
3.7. Species Habitat Suitability: data & estimation


- Invasive Species Occurrence (presence-only data)
 - USGS NAS database
 - Montana State University database
- Environmental Characteristics
 - Elevation (m)
 - Surficial geological features
 - Monthly precipitation (0.01mm)
 - Monthly maximum temperature (0.01 degree Celsius)
 - Monthly minimum temperature (0.01 degree Celsius)
 - City area & its buffer zones


3.8. Maximum Entropy Results: prediction accuracy

- AUC (area under the receiver-operation characteristic curve) = 0.978
 - : If AUC > 0.9, higher predictive performance

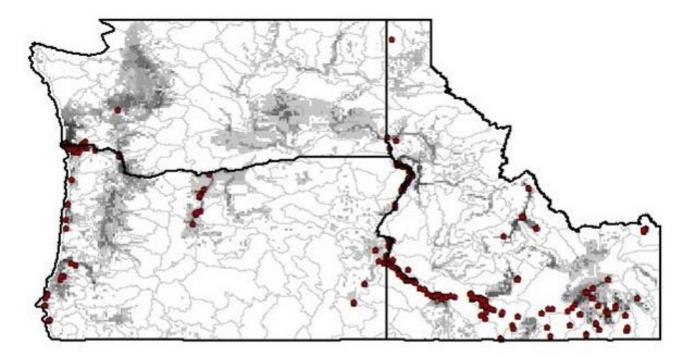
3.9. Maximum Entropy Results as Species Habitat Suitability


New Zealand Mudsnails Habitat Suitability

High : 0.9224 ---- HUC Boundary

Low:0

3.10. Integrated Risk of Invasive Species Distribution


- The Relative Risk of invasive species dispersal
 - Combination of anthropogenic introduction and habitat suitability:

- *j* = hydrologic unit region; and *k* = each grid in the raster map layers
- The estimate $\overline{T_{ij}}$ is normalized as $\tau_j = \frac{\sum_i \overline{T_{ij}}}{\sum_i \sum_j \overline{T_{ij}}}$ ranging between 0 and 1 \rightarrow It will be a scalar to represent the probability of the anthropogenic species introduction
- Anthropogenic introduction = normalized boat flows
- Habitat suitability = probabilistic format of species occurrence

Oregon State

3.11. Integrated Risk of New Zealand Mudsnails Invasion

New Zealand Mudsnails Predicted Establishment Risk

Idaho	Oregon	Washington	NZMS Infected
High : 0.0231	High : 0.0449	High : 0.0205	• HUC Boundary
Low : 0	Low : 0	Low : 0	

reaon

November 07, 2013

4.1. Potential Damage Estimation

- Utility Loss of Anglers
 - Idaho: ΔHabitat quality × \$363.71
 - Oregon: ΔHabitat quality × \$350.20
 - Washington: ΔHabitat quality × \$353.02
- Hydroelectricity plant damage: \$124,110/facility (Connelly et al., 2007; USEIA, 2010)
- Water treatment plant damage: \$726.5/facility (< 2MGD), \$1453/facility (>= 2MGD) (Connelly et al., 2007; Idaho DEQ, Oregon DEQ, and Washington DOH)
- Boat motor replacement: \$118/boat (< 16 feet) or \$235/boat (16-26 feet) (Recreational Boating Statistics 2010 & motor price web search)
- Boat paint cost: \$107/boat (< 16 feet) or \$184/boat (16-26 feet) (Recreational Boating Statistics 2010 & motor price web search)

4.2. Management Cost Estimation

• Statewide Management

State	Prevention	EDRR + other management	Ex-post management
Idaho	605,414	10,938,462	10,544,451
Oregon	396,103	13,492,907	13,070,545
Washington	416,500	47,999,754	47,634,095

- Water Facility Management (Connelly et al., 2007)
- Boater Decontamination: Washing a boat \$3, and Chemical use per boat \$16
- Hatchery Prevention: \$12,000 per hatchery (6-unit hydrocyclone)

5. Total Cost Minimization: Next Step Cost-efficient Management •Species Introduction •Habitat Suitability Expected Damages **Minimize** IS Damages **Total Cost IS Management Costs Different Management Alternatives**

Appendix 1. HUC with high risk of NZMS introduction

Hydrologic Unit Name	Normalized Boat Inflow (τ_j)		Observed NZMS
Idaho			
Upper Salmon	0.0143	1.43%	0
Lower Boise	0.0142	1.42%	0
Lake Walcott	0.0139	1.39%	0
Upper Snake-Rock	0.0139	1.39%	0
Clearwater	0.0138	1.38%	0
Oregon			
Lower Willamette	0.0472	4.72%	×
Lower Columbia	0.0400	4.00%	0
Umpqua	0.0261	2.61%	0
Siletz-Yaquina	0.0258	2.58%	0
Upper Klamath Lake	0.0234	2.34%	×
Washington			
Lake Washington	0.0732	7.32%	×
Puget Sound	0.0485	4.85%	0
Duwamish	0.0365	3.65%	×
Lower Crab	0.0345	3.45%	×
Lower Yakima, Washington	0.0301	3.01%	×

Appendix 2. HUC with high risk of NZMS establishment

Invasion Status	Hydrologic Unit Name with High Risk Percentile
NZMS Observed	 Middle Bear, Lower Bear-Malad, Curlew Valley, American Falls, Portneuf, Lake Walcott, Raft, Upper Snake-Rock, C. J. Idaho, Middle Snake-Succor, Lower Boise, Middle Snake-Payette, Lower Malheur, Brownlee Reservoir, Hells Canyon, Lower Snake-Asotin, Lower Columbia, Necanicum, Wilson-Trusk-Nestuccu, and Siletz- Yaquina
	 20% Little Wood, Crooked-Rattlesnake, Lower Owyhee, Bully, Pahsimeroi, Lower Deschutes, Lower Columbia-Clatskanie, Umpqua, Coos, and Sixes 30% Upper Henrys, Salmon Falls, Big Wood, Bruneau, and Alsea
NZMS Not- Observed	 10% Willapa Bay and Siltcoos 20% Thousand-Virgin, Idaho Falls, Goose, Willow (HUC code 17050119 and 17070104), Lower Salmon, Middle Columbia-Hood, Lower John Day, Grays Harbor, Nehalem, Siuslaw, and Coquille 30% Central Bear, Bear Lake, Payette, Weiser, Powder, Imnaha, Lower Grande Ronde, Lower Snake-Tucannon, Middle Columbia-Lake Wallula, Klickitat, Trout, Upper Willamette, Middle Willamette, Lower Willamette, Middle Rogue, Chetco, and Alvord Lake

Appendix 3. HUC with high risk of NZMS invasion

Invasion Status	Hydrologic Unit Name with High Risk Percentile (10%)		
	Idaho		
		Middle Snake-Payette, Middle Snake-Succor, American Falls, Middle	
		Bear, Upper	
NZMS	Oregon		
Observed		Lower Columbia, Siletz-Yaquina, Necanicum, Umpqua, Wilson-Trusk-	
		Nestuccu, Middle Snake-Payette, and Coos	
	Washington		
		Lower Columbia and Lower Columbia-Clatskanie	
	Idaho		
		(Lower Salmon and Goose if the percentile is 20%)	
	Oregon		
NZMS		Siltcoos and Lower Willamette	
Not-Observed	Washington		
	_	Willapa bay, Lake Washington, Middle Columbia-Hood, Grays Harbor,	
		and Upper Columbia-Priest Rapids	