

Knotweed biocontrol: An upcoming management option?

Jennifer Andreas, IWCP Director jandreas@wsu.edu, (253) 651-2197

WSU Extension's Role

- State-wide program
- Provide biocontrol agents free of charge to land managers
- Education to land managers
- Expertise & on-site recommendations

- Funded primarily by USFS & supplemental funding from County Noxious Weed Control Programs
 - ~ King, Pierce, Kitsap, Thurston, Yakima, Cowlitz

What is Biocontrol?

The intentional use of one living organism to control/suppress another organism, such as <u>noxious weeds</u>

Classical Biocontrol

- Theory that explains why non-native plants are so good at invading
 - plants are able to establish large infestations and become widespread in their introduced range because they are released from their natural enemies
- Classical biocontrol reunites a plant species with its natural enemies in hopes of achieving the balance found in the plant's native range.

Ideal Biocontrol Results

Water Hyacinth Example

Louisiana Waterhyacinth Data

USACE

Insect Life Cycle

- Beetles, flies, moths
- 4 distinct
 life stages
 (egg, larva, pupa, adult)
- Larval stage often inside plant

Advantages of Using Biocontrol

- Host-specific: USDA APHIS approves biological control agents before introduction into U.S.
- Ecologically desirable
- Resistance highly unlikely
- Excellent searching capabilities
- Long-term control

- Biocontrol agents are mobile & self-sustaining
- Cost effective particularly on low value land

Limitations of Using Biocontrol

- Long time to make impact
- Degree of control varies
- Subject to predators
- May not establish or thrive at some sites
- Limited availability of some agents
- Very slow approval of new agents
- No eradication

Weeds with Biocontrol Agents

- Scotch broom
- tansy ragwort
- diffuse knapweed
- spotted knapweed
- meadow knapweed
- Canada thistle
- bull thistle
- Dalmatian toadflax
- yellow toadflax
- St. Johnswort

- purple loosestrife
- bindweed
- yellow starthistle
- puncturevine
- rush skeletonweed
- Russian knapweed
- leafy spurge
- gorse
- Mediterranean sage

Knotweed Biocontrol

- 3 species
 - » Japanese
 - ~ Fallopia japonica
 - ~ Polygonum cuspidatum
 - » giant
 - ~ Fallopia sachalinensis
 - ~ Polygonum sachalinense
 - » Bohemian (hybrid)
 - ~ Fallopia x bohemica
 - ~ Polygonum x bohemicum
- makes it difficult to find effective agents
- genetic studies to improve selection of agents

Researchers

- Fritzi Grevstad ~ Oregon State University
- Rob Bourchier
 - Agriculture & Agri-Food
 Canada, Lethbridge AB
- Richard Shaw
 ~ CABI, United Kingdom
- Paolo Sanguankeo

 formerly: Olympic Natural Resources Center, Forks WA
- Chislaine Cortat
 - ~ CABI, Switzerland

- John Gaskin
 - ~ lead for genetic studies
 - ~ USDA-ARS-NPARL, Sidney MT
- Richard Reardon
 USFS FHTET, Morgantown WV

Insects Tested & Rejected

Ostrinia ovalipennis

- & O. latipennis • stem-boring pyralid
- host range is too broad
- fed on *Rumex* spp., native *Fallopia* spp., *Rheum* sp. (rhubarb)
- REJECTED

Gallerucida bifasciata

- leaf-feeding beetle
- fed on *Rumex* spp., native *Fallopia* spp., *Rheum* sp. (rhubarb)
- REJECTED

Potential Pathogen

Mycosphaerella polygoni-cuspidati

- leafspot fungus
- only attacks Japanese
 - ~ questionable efficacy for North America

testing continues in UK; Bill Bruckart (USDA-ARS) in US?
complex lifecycle makes testing difficult

Aphalara itadori – Life History

- sap-sucking psyllid
 attack meristem tissue
- female lay 600-700 eggs on leaf surface
- 5 nymphal instars
- 1 generation takes 33 days
 - expect 2 generations/year at 98% of sites
 - partial 3rd generation at 13 15% sites at lower elevation
- overwinter as adults
 ~ in conifer tree bark

Aphalara itadori - Damage

- nymphs can kill plants at high densities
- twist / bind leaves
- can kill plants quickly in lab
- plants do not grow back
- depletes energy supply =
 - ↓ growth
 - \downarrow root storage
- leaf deformity =
 - \downarrow leaf area
 - \downarrow photosynthetic rate
 - ↓ growth
 - ↓ competitive ability

A. itadori – Range & Biotypes

- potential range
 - ~ central CA to Alaska
 - ~ Georgia to Newfoundland
- two biotypes (strains)
- southern strain
 - ~ Kyushu
 - ~ attacks Japanese & hybrid
 - ~ released in UK
- northern strain
 - ~ Hokkaido
 - ~ attacks giant
- crossing strains
 - ~ attack all 3 species

A. itadori – Host-range Testing

- 70 species tested
- marginal development on 3 nontarget species
 - ~ *Fallopia cilinodis* eastern US native
 - buckwheat (*Fagopyrum* esculentum) – crop
 - ~ *Muehlenbeckia axillaris* minor ornamental
- nontarget outcome
 - ~ ↑ adult mortality
 - unable to maintain populations
 - ~ no detectable impacts

A. itadori – Petition & Releases

- petition submitted to the TAG
 - ~ 2 October 2012
 - likely 18 months to make a recommendation
- petition then submitted to USDA-APHIS
 - timeline unclear probably more than a year
- pre-release monitoring in 2014?

A. itadori – Monitoring

- initial releases on 4 sites (2 WA & 2 OR)
 - ~ release on isolated watersheds to track dispersal/spread
 - ~ potential sites based on knotweed species
- collect data
 - plant density, height, stem diameter, aerial photos
 insect phenology, population increase, dispersal, nontarget
- don't expect impacts for first few years

Biocontrol Expectations

- plants will likely be stunted, not killed
- biocontrol not appropriate for all sites, including:
 - ~ smaller infestations~ priority wetlands & rivers~ dynamic river systems?
- establishment can take many years, impacts even longer

- most hybrids in our region hybridized a long time ago – before coming to US
- Japanese is one clone same as UK
- giant differs by region but is same clone within region
- one Bohemian clone is more dominant than others
- MT clone is different than WA clone
- MT/ID almost all Bohemian
- Paper submitted (Gaskin et al.)

- western U.S.
 - ~ giant approx. 15% field plants surveyed
 - ~ Japanese approx. 15% field plants surveyed
 - ~ Bohemian (hybrid) approx. 70% of plants surveyed
- northeastern U.S. (morphological ID?)
 ~ greater proportion of Japanese
- British Columbia (morphological ID?)
 ~ primarily Japanese, 10% giant & hybrid

- most WA rivers are diverse
 - ~ primarily Bohemian
 - hybrids reproducing sexually & some seeds are establishing
 - spreading by seed as long as more than 1 clone present in system
- giant more prevalent in coastal regions
 - = Japanese (F. japonica)
 - ▲ = giant (F. sachalinensis)
 - \times = hybrid (F. x bohemica)

 - ϕ = giant/hybrid mix
 - = unknown species

Thank You

Contact information: jandreas@wsu.edu (253) 651-2197 cell. www.invasives.wsu.edu